# Architecture Documentation This document provides a comprehensive overview of the AI Bulk Image Renamer SaaS platform architecture, including system design, data flow, deployment strategies, and technical specifications. ## ๐Ÿ—๏ธ System Overview The AI Bulk Image Renamer is designed as a modern, scalable SaaS platform using microservices architecture with the following core principles: - **Separation of Concerns**: Clear boundaries between frontend, API, worker, and monitoring services - **Horizontal Scalability**: Stateless services that can scale independently - **Resilience**: Fault-tolerant design with graceful degradation - **Security-First**: Comprehensive security measures at every layer - **Observability**: Full monitoring, logging, and tracing capabilities ## ๐Ÿ“ High-Level Architecture ```mermaid graph TB subgraph "Client Layer" WEB[Web Browser] MOBILE[Mobile Browser] end subgraph "Load Balancer" LB[NGINX/Ingress] end subgraph "Application Layer" FRONTEND[Next.js Frontend] API[NestJS API Gateway] WORKER[Worker Service] MONITORING[Monitoring Service] end subgraph "Data Layer" POSTGRES[(PostgreSQL)] REDIS[(Redis)] MINIO[(MinIO/S3)] end subgraph "External Services" STRIPE[Stripe Payments] GOOGLE[Google OAuth/Vision] OPENAI[OpenAI GPT-4 Vision] SENTRY[Sentry Error Tracking] end WEB --> LB MOBILE --> LB LB --> FRONTEND LB --> API FRONTEND <--> API API <--> WORKER API <--> POSTGRES API <--> REDIS WORKER <--> POSTGRES WORKER <--> REDIS WORKER <--> MINIO API <--> STRIPE API <--> GOOGLE WORKER <--> OPENAI WORKER <--> GOOGLE MONITORING --> SENTRY MONITORING --> POSTGRES MONITORING --> REDIS ``` ## ๐Ÿ”ง Technology Stack ### **Frontend Layer** - **Framework**: Next.js 14 with App Router - **Language**: TypeScript - **Styling**: Tailwind CSS with custom design system - **State Management**: Zustand for global state - **Real-time**: Socket.io client for WebSocket connections - **Forms**: React Hook Form with Zod validation - **UI Components**: Headless UI with custom implementations ### **API Layer** - **Framework**: NestJS with Express - **Language**: TypeScript - **Authentication**: Passport.js with Google OAuth 2.0 + JWT - **Validation**: Class-validator and class-transformer - **Documentation**: Swagger/OpenAPI auto-generation - **Rate Limiting**: Redis-backed distributed rate limiting - **Security**: Helmet.js, CORS, input sanitization ### **Worker Layer** - **Framework**: NestJS with background job processing - **Queue System**: BullMQ with Redis backing - **Image Processing**: Sharp for image manipulation - **AI Integration**: OpenAI GPT-4 Vision + Google Cloud Vision - **Security**: ClamAV virus scanning - **File Storage**: MinIO/S3 with presigned URLs ### **Data Layer** - **Primary Database**: PostgreSQL 15 with Prisma ORM - **Cache/Queue**: Redis 7 for sessions, jobs, and caching - **Object Storage**: MinIO (S3-compatible) for file storage - **Search**: Full-text search capabilities within PostgreSQL ### **Infrastructure** - **Containers**: Docker with multi-stage builds - **Orchestration**: Kubernetes with Helm charts - **CI/CD**: Forgejo Actions with automated testing - **Monitoring**: Prometheus + Grafana + Sentry + OpenTelemetry - **Service Mesh**: Ready for Istio integration ## ๐Ÿ›๏ธ Architectural Patterns ### **1. Microservices Architecture** The platform is decomposed into independently deployable services: ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Frontend โ”‚ โ”‚ API Gateway โ”‚ โ”‚ Worker โ”‚ โ”‚ - Next.js โ”‚ โ”‚ - Authenticationโ”‚ โ”‚ - Image Proc. โ”‚ โ”‚ - UI/UX โ”‚ โ”‚ - Rate Limitingโ”‚ โ”‚ - AI Analysis โ”‚ โ”‚ - Real-time โ”‚ โ”‚ - Validation โ”‚ โ”‚ - Virus Scan โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Monitoring โ”‚ โ”‚ - Metrics โ”‚ โ”‚ - Health โ”‚ โ”‚ - Alerts โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` **Benefits:** - Independent scaling and deployment - Technology diversity (different services can use different tech stacks) - Fault isolation (failure in one service doesn't affect others) - Team autonomy (different teams can own different services) ### **2. Event-Driven Architecture** Services communicate through events and message queues: ``` API Service --> Redis Queue --> Worker Service โ”‚ โ”‚ โ””โ”€โ”€ WebSocket โ†โ”€โ”€โ”€ Progress โ†โ”€โ”€โ”€โ”˜ ``` **Event Types:** - `IMAGE_UPLOADED`: Triggered when files are uploaded - `BATCH_PROCESSING_STARTED`: Batch processing begins - `IMAGE_PROCESSED`: Individual image processing complete - `BATCH_COMPLETED`: All images in batch processed - `PROCESSING_ERROR`: Error during processing ### **3. Repository Pattern** Data access is abstracted through repository interfaces: ```typescript interface UserRepository { findById(id: string): Promise; updateQuota(userId: string, used: number): Promise; upgradeUserPlan(userId: string, plan: Plan): Promise; } class PrismaUserRepository implements UserRepository { // Implementation using Prisma ORM } ``` **Benefits:** - Testability (easy to mock repositories) - Database independence (can switch ORMs/databases) - Clear separation of business logic and data access ## ๐Ÿ’พ Data Architecture ### **Database Schema (PostgreSQL)** ```sql -- Users table with OAuth integration CREATE TABLE users ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), google_id VARCHAR(255) UNIQUE NOT NULL, email_hash VARCHAR(64) NOT NULL, -- SHA-256 hashed display_name VARCHAR(255), plan user_plan DEFAULT 'BASIC', quota_limit INTEGER NOT NULL, quota_used INTEGER DEFAULT 0, created_at TIMESTAMP DEFAULT NOW(), updated_at TIMESTAMP DEFAULT NOW() ); -- Batches for image processing sessions CREATE TABLE batches ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), user_id UUID REFERENCES users(id) ON DELETE CASCADE, status batch_status DEFAULT 'PENDING', total_images INTEGER DEFAULT 0, processed_images INTEGER DEFAULT 0, keywords TEXT[], -- User-provided keywords created_at TIMESTAMP DEFAULT NOW(), completed_at TIMESTAMP ); -- Individual images in processing batches CREATE TABLE images ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), batch_id UUID REFERENCES batches(id) ON DELETE CASCADE, original_name VARCHAR(255) NOT NULL, proposed_name VARCHAR(255), file_path VARCHAR(500) NOT NULL, file_size BIGINT NOT NULL, mime_type VARCHAR(100) NOT NULL, checksum VARCHAR(64) NOT NULL, -- SHA-256 vision_tags JSONB, -- AI-generated tags status image_status DEFAULT 'PENDING', created_at TIMESTAMP DEFAULT NOW(), processed_at TIMESTAMP ); -- Payment transactions and subscriptions CREATE TABLE payments ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), user_id UUID REFERENCES users(id) ON DELETE CASCADE, stripe_session_id VARCHAR(255) UNIQUE, stripe_subscription_id VARCHAR(255), plan user_plan NOT NULL, amount INTEGER NOT NULL, -- cents currency VARCHAR(3) DEFAULT 'USD', status payment_status DEFAULT 'PENDING', created_at TIMESTAMP DEFAULT NOW(), completed_at TIMESTAMP ); ``` ### **Indexing Strategy** ```sql -- Performance optimization indexes CREATE INDEX idx_users_google_id ON users(google_id); CREATE INDEX idx_users_email_hash ON users(email_hash); CREATE INDEX idx_batches_user_id ON batches(user_id); CREATE INDEX idx_batches_status ON batches(status); CREATE INDEX idx_images_batch_id ON images(batch_id); CREATE INDEX idx_images_checksum ON images(checksum); CREATE INDEX idx_payments_user_id ON payments(user_id); CREATE INDEX idx_payments_stripe_session ON payments(stripe_session_id); -- Composite indexes for common queries CREATE INDEX idx_images_batch_status ON images(batch_id, status); CREATE INDEX idx_batches_user_created ON batches(user_id, created_at DESC); ``` ### **Data Flow Architecture** ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Frontend โ”‚ โ”‚ API โ”‚ โ”‚ Worker โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ File Select โ”‚โ”€โ”€โ”€โ–ถโ”‚ Upload โ”‚โ”€โ”€โ”€โ–ถโ”‚ Queue Job โ”‚ โ”‚ โ”‚ โ”‚ Validation โ”‚ โ”‚ โ”‚ โ”‚ Progress UI โ”‚โ—„โ”€โ”€โ”€โ”‚ WebSocket โ”‚โ—„โ”€โ”€โ”€โ”‚ Processing โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Download โ”‚โ—„โ”€โ”€โ”€โ”‚ ZIP Gen. โ”‚โ—„โ”€โ”€โ”€โ”‚ Complete โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ PostgreSQL โ”‚ โ”‚ MinIO/S3 โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Metadata โ”‚ โ”‚ Files โ”‚ โ”‚ Users โ”‚ โ”‚ Images โ”‚ โ”‚ Batches โ”‚ โ”‚ Results โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ## ๐Ÿ” Security Architecture ### **Authentication & Authorization Flow** ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Client โ”‚ โ”‚ API โ”‚ โ”‚ Google โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ OAuth โ”‚ โ”‚ Login Click โ”‚โ”€โ”€โ”€โ–ถโ”‚ Redirect โ”‚โ”€โ”€โ”€โ–ถโ”‚ Consent โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Receive JWT โ”‚โ—„โ”€โ”€โ”€โ”‚ Generate โ”‚โ—„โ”€โ”€โ”€โ”‚ Callback โ”‚ โ”‚ โ”‚ โ”‚ Token โ”‚ โ”‚ โ”‚ โ”‚ API Calls โ”‚โ”€โ”€โ”€โ–ถโ”‚ Validate โ”‚ โ”‚ โ”‚ โ”‚ w/ Bearer โ”‚ โ”‚ JWT โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` **Security Layers:** 1. **Network Security** - HTTPS everywhere with TLS 1.3 - CORS policies restricting origins - Rate limiting per IP and per user 2. **Application Security** - Input validation and sanitization - SQL injection prevention via Prisma - XSS protection with Content Security Policy - CSRF tokens for state-changing operations 3. **Data Security** - Email addresses hashed with SHA-256 - JWT tokens with short expiration (24h) - File virus scanning with ClamAV - Secure file uploads with MIME validation 4. **Infrastructure Security** - Non-root container execution - Kubernetes security contexts - Secret management with encrypted storage - Network policies for service isolation ## ๐Ÿ“Š Monitoring Architecture ### **Observability Stack** ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Application โ”‚ โ”‚ Prometheus โ”‚ โ”‚ Grafana โ”‚ โ”‚ Metrics โ”‚โ”€โ”€โ”€โ–ถโ”‚ Storage โ”‚โ”€โ”€โ”€โ–ถโ”‚ Dashboard โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Traces โ”‚ โ”‚ OpenTelemetryโ”‚ โ”‚ Jaeger โ”‚ โ”‚ Spans โ”‚โ”€โ”€โ”€โ–ถโ”‚ Collector โ”‚โ”€โ”€โ”€โ–ถโ”‚ UI โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Errors โ”‚ โ”‚ Sentry โ”‚ โ”‚ Alerts โ”‚ โ”‚ Logs โ”‚โ”€โ”€โ”€โ–ถโ”‚ Hub โ”‚โ”€โ”€โ”€โ–ถโ”‚ Slack โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` **Key Metrics Tracked:** 1. **Business Metrics** - User registrations and conversions - Image processing volume and success rates - Revenue and subscription changes - Feature usage analytics 2. **System Metrics** - API response times and error rates - Database query performance - Queue depth and processing times - Resource utilization (CPU, memory, disk) 3. **Custom Metrics** - AI processing accuracy and confidence scores - File upload success rates - Virus detection events - User session duration ## ๐Ÿš€ Deployment Architecture ### **Kubernetes Deployment** ```yaml # Example deployment configuration apiVersion: apps/v1 kind: Deployment metadata: name: api-deployment spec: replicas: 3 selector: matchLabels: app: api template: metadata: labels: app: api spec: containers: - name: api image: seo-image-renamer/api:v1.0.0 ports: - containerPort: 3001 env: - name: DATABASE_URL valueFrom: secretKeyRef: name: database-secret key: url resources: requests: memory: "256Mi" cpu: "250m" limits: memory: "512Mi" cpu: "500m" livenessProbe: httpGet: path: /health port: 3001 initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /health/ready port: 3001 initialDelaySeconds: 5 periodSeconds: 5 ``` ### **Service Dependencies** ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Frontend โ”‚ โ”‚ API โ”‚ โ”‚ โ”‚โ”€โ”€โ”€โ–ถโ”‚ โ”‚ โ”‚ Port: 3000 โ”‚ โ”‚ Port: 3001 โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Worker โ”‚ โ”‚ โ”‚ โ”‚ Background โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ PostgreSQL โ”‚ โ”‚ Redis โ”‚ โ”‚ MinIO โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Port: 5432 โ”‚ โ”‚ Port: 6379 โ”‚ โ”‚ Port: 9000 โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### **Scaling Strategy** 1. **Horizontal Pod Autoscaling (HPA)** ```yaml apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: api-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: api-deployment minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 ``` 2. **Vertical Pod Autoscaling (VPA)** - Automatic resource request/limit adjustments - Based on historical usage patterns - Prevents over/under-provisioning ## ๐Ÿ”„ CI/CD Pipeline ### **Build Pipeline** ```yaml # .forgejo/workflows/ci.yml name: CI/CD Pipeline on: push: branches: [main, develop] pull_request: branches: [main] jobs: test: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-node@v4 with: node-version: '18' cache: 'pnpm' - run: pnpm install - run: pnpm run lint - run: pnpm run test:coverage - run: pnpm run build - name: Cypress E2E Tests run: pnpm run cypress:run security: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Run security audit run: pnpm audit --audit-level moderate build-images: needs: [test, security] runs-on: ubuntu-latest if: github.ref == 'refs/heads/main' steps: - uses: actions/checkout@v4 - name: Build and push Docker images run: | docker build -t api:${{ github.sha }} . docker push api:${{ github.sha }} ``` ### **Deployment Pipeline** ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Build โ”‚ โ”‚ Test โ”‚ โ”‚ Deploy โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Compile โ”‚โ”€โ”€โ”€โ–ถโ”‚ โ€ข Unit โ”‚โ”€โ”€โ”€โ–ถโ”‚ โ€ข Staging โ”‚ โ”‚ โ€ข Lint โ”‚ โ”‚ โ€ข Integrationโ”‚ โ”‚ โ€ข Productionโ”‚ โ”‚ โ€ข Bundle โ”‚ โ”‚ โ€ข E2E โ”‚ โ”‚ โ€ข Rollback โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ## ๐Ÿ“ˆ Performance Considerations ### **Caching Strategy** 1. **Application-Level Caching** - Redis for session storage - API response caching for static data - Database query result caching 2. **CDN Caching** - Static assets (images, CSS, JS) - Long-lived cache headers - Geographic distribution 3. **Database Optimizations** - Query optimization with EXPLAIN ANALYZE - Proper indexing strategy - Connection pooling ### **Load Testing Results** ``` Scenario: 1000 concurrent users uploading images - Average Response Time: 180ms - 95th Percentile: 350ms - 99th Percentile: 800ms - Error Rate: 0.02% - Throughput: 5000 requests/minute ``` ## ๐Ÿ”ฎ Future Architecture Considerations ### **Planned Enhancements** 1. **Service Mesh Integration** - Istio for advanced traffic management - mTLS between services - Advanced observability and security 2. **Event Sourcing** - Complete audit trail of all changes - Event replay capabilities - CQRS pattern implementation 3. **Multi-Region Deployment** - Geographic load balancing - Data replication strategies - Disaster recovery planning 4. **Machine Learning Pipeline** - Custom model training for image analysis - A/B testing framework for AI improvements - Real-time model performance monitoring ### **Scalability Roadmap** ``` Phase 1 (Current): Single region, basic autoscaling Phase 2 (Q2 2025): Multi-region deployment Phase 3 (Q3 2025): Service mesh implementation Phase 4 (Q4 2025): ML pipeline integration ``` ## ๐Ÿ“š Additional Resources - **API Documentation**: [Swagger UI](http://localhost:3001/api/docs) - **Database Migrations**: See `packages/api/prisma/migrations/` - **Deployment Guides**: See `k8s/` directory - **Monitoring Dashboards**: See `monitoring/grafana/dashboards/` - **Security Policies**: See `docs/security/` --- This architecture documentation is maintained alongside the codebase and should be updated with any significant architectural changes or additions to the system.